меню

Решение треугольника c катетом 523 и углом 30 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=301.95
b=523
c=603.93
30°
60°
S=78963.8
P=1428.9
r=110.51
R=301.97
h=261.5
mc=301.97

Гипотенуза:
c =
b
cos(α°)
=
523
cos(30°)
=
523
0.866
= 603.93

Угол:
β° = 90°-α°
= 90°-30°
= 60°

Высота:
h = b·sin(α°)
= 523·sin(30°)
= 523·0.5
= 261.5

Катет:
a = h·
c
b
= 261.5·
603.93
523
= 301.97
или:
a =  c2 - b2
=  603.932 - 5232
=  364731.4 - 273529
=  91202.4
= 302
или:
a = c·sin(α°)
= 603.93·sin(30°)
= 603.93·0.5
= 301.97
или:
a = c·cos(β°)
= 603.93·cos(60°)
= 603.93·0.5
= 301.97
или:
a =
h
cos(α°)
=
261.5
cos(30°)
=
261.5
0.866
= 301.96
или:
a =
h
sin(β°)
=
261.5
sin(60°)
=
261.5
0.866
= 301.96
или:
a =  
c2 -  c4- 4c2h2
2
=  
603.932 -  603.934- 4·603.932·261.52
2
=  
364731.4 -  133028994146- 4·364731.4·68382.3
2
=  
364731.4 -  33264306089
2
= 301.95

Площадь:
S =
h·c
2
=
261.5·603.93
2
= 78963.8

Радиус описанной окружности:
R =
c
2
=
603.93
2
= 301.97

Медиана:
Mc =
c
2
=
603.93
2
= 301.97

Радиус вписанной окружности:
r =
a+b-c
2
=
301.95+523-603.93
2
= 110.51

Периметр:
P = a+b+c
= 301.95+523+603.93
= 1428.9
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: