меню

Решение треугольника c катетом 1035.3 и гипотенузой 4000 и углом 75 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=3863.6
b=1035.3
c=4000
75°
15°
S=2000000
P=8898.9
r=449.45
R=2000
h=1000
mc=2000

Катет:
a =  c2 - b2
=  40002 - 1035.32
=  16000000 - 1071846
=  14928154
= 3863.7
или:
a = c·sin(α°)
= 4000·sin(75°)
= 4000·0.9659
= 3863.6

Угол:
β° = arcsin
b
c
= arcsin
1035.3
4000
= 15°
или:
β° = 90°-α°
= 90°-75°
= 15°

Высота:
h = b·sin(α°)
= 1035.3·sin(75°)
= 1035.3·0.9659
= 1000

Радиус описанной окружности:
R =
c
2
=
4000
2
= 2000

Медиана:
Mc =
c
2
=
4000
2
= 2000

Площадь:
S =
ab
2
=
3863.6·1035.3
2
= 1999993
или:
S =
h·c
2
=
1000·4000
2
= 2000000

Радиус вписанной окружности:
r =
a+b-c
2
=
3863.6+1035.3-4000
2
= 449.45

Периметр:
P = a+b+c
= 3863.6+1035.3+4000
= 8898.9
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: