меню

Решение треугольника c катетом 1.3 и углом 51 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=1.298
b=1.3
c=2.066
51°
39°
S=1.043
P=4.664
r=0.266
R=1.033
h=1.01
mc=1.033

Гипотенуза:
c =
b
cos(α°)
=
1.3
cos(51°)
=
1.3
0.6293
= 2.066

Угол:
β° = 90°-α°
= 90°-51°
= 39°

Высота:
h = b·sin(α°)
= 1.3·sin(51°)
= 1.3·0.7771
= 1.01

Катет:
a = h·
c
b
= 1.01·
2.066
1.3
= 1.605
или:
a =  c2 - b2
=  2.0662 - 1.32
=  4.268 - 1.69
=  2.578
= 1.606
или:
a = c·sin(α°)
= 2.066·sin(51°)
= 2.066·0.7771
= 1.605
или:
a = c·cos(β°)
= 2.066·cos(39°)
= 2.066·0.7771
= 1.605
или:
a =
h
cos(α°)
=
1.01
cos(51°)
=
1.01
0.6293
= 1.605
или:
a =
h
sin(β°)
=
1.01
sin(39°)
=
1.01
0.6293
= 1.605
или:
a =  
c2 -  c4- 4c2h2
2
=  
2.0662 -  2.0664- 4·2.0662·1.012
2
=  
4.268 -  18.22- 4·4.268·1.02
2
=  
4.268 -  0.8066
2
= 1.298

Площадь:
S =
h·c
2
=
1.01·2.066
2
= 1.043

Радиус описанной окружности:
R =
c
2
=
2.066
2
= 1.033

Медиана:
Mc =
c
2
=
2.066
2
= 1.033

Радиус вписанной окружности:
r =
a+b-c
2
=
1.298+1.3-2.066
2
= 0.266

Периметр:
P = a+b+c
= 1.298+1.3+2.066
= 4.664
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: