Решение треугольника c катетом 700 и углом 10 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=123.39
b=700
c=710.8
10°
80°
S=43188.2
P=1534.2
r=56.3
R=355.4
h=121.52
mc=355.4
Гипотенуза:
c =
b
cos(α°)
=
700
cos(10°)
=
700
0.9848
= 710.8
Угол:
β° = 90°-α°
= 90°-10°
= 80°
Высота:
h = b·sin(α°)
= 700·sin(10°)
= 700·0.1736
= 121.52
Катет:
a = h·
c
b
= 121.52·
710.8
700
= 123.39
или:
a = c2 - b2
= 710.82 - 7002
= 505236.6 - 490000
= 15236.6
= 123.44
или:
a = c·sin(α°)
= 710.8·sin(10°)
= 710.8·0.1736
= 123.39
или:
a = c·cos(β°)
= 710.8·cos(80°)
= 710.8·0.1736
= 123.39
или:
a =
h
cos(α°)
=
121.52
cos(10°)
=
121.52
0.9848
= 123.4
или:
a =
h
sin(β°)
=
121.52
sin(80°)
=
121.52
0.9848
= 123.4
или:
a =
c2 - c4- 4c2h2
2
=
710.82 - 710.84- 4·710.82·121.522
2
=
505236.6 - 255264021980- 4·505236.6·14767.1
2
=
505236.6 - 225420504397
2
= 123.39
Площадь:
S =
h·c
2
=
121.52·710.8
2
= 43188.2
Радиус описанной окружности:
R =
c
2
=
710.8
2
= 355.4
Медиана:
Mc =
c
2
=
710.8
2
= 355.4
Радиус вписанной окружности:
r =
a+b-c
2
=
123.39+700-710.8
2
= 56.3
Периметр:
P = a+b+c
= 123.39+700+710.8
= 1534.2
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: