меню

Решение треугольника c катетом 150 и углом 78 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=150
b=150.01
c=153.36
78°
12°
S=2391.6
P=453.37
r=73.33
R=76.68
h=31.19
mc=76.68

Гипотенуза:
c =
a
sin(α°)
=
150
sin(78°)
=
150
0.9781
= 153.36

Угол:
β° = 90°-α°
= 90°-78°
= 12°

Высота:
h = a·cos(α°)
= 150·cos(78°)
= 150·0.2079
= 31.19

Катет:
b = h·
c
a
= 31.19·
153.36
150
= 31.89
или:
b =  c2 - a2
=  153.362 - 1502
=  23519.3 - 22500
=  1019.3
= 31.93
или:
b = c·sin(β°)
= 153.36·sin(12°)
= 153.36·0.2079
= 31.88
или:
b = c·cos(α°)
= 153.36·cos(78°)
= 153.36·0.2079
= 31.88
или:
b =
h
sin(α°)
=
31.19
sin(78°)
=
31.19
0.9781
= 31.89
или:
b =
h
cos(β°)
=
31.19
cos(12°)
=
31.19
0.9781
= 31.89
или:
b =  
c2 +  c4- 4c2h2
2
=  
153.362 +  153.364- 4·153.362·31.192
2
=  
23519.3 +  553157472- 4·23519.3·972.82
2
=  
23519.3 +  461637290
2
= 150.01

Площадь:
S =
h·c
2
=
31.19·153.36
2
= 2391.6

Радиус описанной окружности:
R =
c
2
=
153.36
2
= 76.68

Медиана:
Mc =
c
2
=
153.36
2
= 76.68

Радиус вписанной окружности:
r =
a+b-c
2
=
150+150.01-153.36
2
= 73.33

Периметр:
P = a+b+c
= 150+150.01+153.36
= 453.37
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: