Решение треугольника c катетом 4,955 и углом 25 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=2.311
b=4.955
c=5.467
25°
65°
S=5.724
P=12.73
r=0.8995
R=2.734
h=2.094
mc=2.734
Гипотенуза:
c =
b
cos(α°)
=
4.955
cos(25°)
=
4.955
0.9063
= 5.467
Угол:
β° = 90°-α°
= 90°-25°
= 65°
Высота:
h = b·sin(α°)
= 4.955·sin(25°)
= 4.955·0.4226
= 2.094
Катет:
a = h·
c
b
= 2.094·
5.467
4.955
= 2.31
или:
a = c2 - b2
= 5.4672 - 4.9552
= 29.89 - 24.55
= 5.336
= 2.31
или:
a = c·sin(α°)
= 5.467·sin(25°)
= 5.467·0.4226
= 2.31
или:
a = c·cos(β°)
= 5.467·cos(65°)
= 5.467·0.4226
= 2.31
или:
a =
h
cos(α°)
=
2.094
cos(25°)
=
2.094
0.9063
= 2.31
или:
a =
h
sin(β°)
=
2.094
sin(65°)
=
2.094
0.9063
= 2.31
или:
a =
c2 - c4- 4c2h2
2
=
5.4672 - 5.4674- 4·5.4672·2.0942
2
=
29.89 - 893.41- 4·29.89·4.385
2
=
29.89 - 369.14
2
= 2.311
Площадь:
S =
h·c
2
=
2.094·5.467
2
= 5.724
Радиус описанной окружности:
R =
c
2
=
5.467
2
= 2.734
Медиана:
Mc =
c
2
=
5.467
2
= 2.734
Радиус вписанной окружности:
r =
a+b-c
2
=
2.311+4.955-5.467
2
= 0.8995
Периметр:
P = a+b+c
= 2.311+4.955+5.467
= 12.73
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: