меню

Решение треугольника c катетом 20 и катетом 46,90 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=20
b=46.90
c=50.99
23.1°
66.9°
S=469
P=117.89
r=7.955
R=25.5
h=18.4
mc=25.5

Гипотенуза:
c =  a2 + b2
=  202 + 46.902
=  400 + 2199.6
=  2599.6
= 50.99

Площадь:
S =
ab
2
=
20·46.90
2
= 469

Угол:
α° = arcsin
a
c
= arcsin
20
50.99
= 23.1°

Угол:
β° = arcsin
b
c
= arcsin
46.90
50.99
= 66.9°

Высота:
h =
ab
c
=
20·46.90
50.99
= 18.4
или:
h =
2S
c
=
2 · 469
50.99
= 18.4

Радиус вписанной окружности:
r =
a+b-c
2
=
20+46.90-50.99
2
= 7.955

Радиус описанной окружности:
R =
c
2
=
50.99
2
= 25.5

Периметр:
P = a+b+c
= 20+46.90+50.99
= 117.89

Медиана:
Mc =
c
2
=
50.99
2
= 25.5
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: