меню

Решение треугольника c катетом 400 и углом 3,8 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=26.57
b=400
c=400.88
3.8°
86.2°
S=5313.7
P=827.45
r=12.85
R=200.44
h=26.51
mc=200.44

Гипотенуза:
c =
b
cos(α°)
=
400
cos(3.8°)
=
400
0.9978
= 400.88

Угол:
β° = 90°-α°
= 90°-3.8°
= 86.2°

Высота:
h = b·sin(α°)
= 400·sin(3.8°)
= 400·0.06627
= 26.51

Катет:
a = h·
c
b
= 26.51·
400.88
400
= 26.57
или:
a =  c2 - b2
=  400.882 - 4002
=  160704.8 - 160000
=  704.77
= 26.55
или:
a = c·sin(α°)
= 400.88·sin(3.8°)
= 400.88·0.06627
= 26.57
или:
a = c·cos(β°)
= 400.88·cos(86.2°)
= 400.88·0.06627
= 26.57
или:
a =
h
cos(α°)
=
26.51
cos(3.8°)
=
26.51
0.9978
= 26.57
или:
a =
h
sin(β°)
=
26.51
sin(86.2°)
=
26.51
0.9978
= 26.57
или:
a =  
c2 -  c4- 4c2h2
2
=  
400.882 -  400.884- 4·400.882·26.512
2
=  
160704.8 -  25826032743- 4·160704.8·702.78
2
=  
160704.8 -  25374272266
2
= 26.57

Площадь:
S =
h·c
2
=
26.51·400.88
2
= 5313.7

Радиус описанной окружности:
R =
c
2
=
400.88
2
= 200.44

Медиана:
Mc =
c
2
=
400.88
2
= 200.44

Радиус вписанной окружности:
r =
a+b-c
2
=
26.57+400-400.88
2
= 12.85

Периметр:
P = a+b+c
= 26.57+400+400.88
= 827.45
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: