Решение треугольника c катетом 7,5 и углом 12 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=1.594
b=7.5
c=7.668
12°
78°
S=5.977
P=16.76
r=0.713
R=3.834
h=1.559
mc=3.834
Гипотенуза:
c =
b
cos(α°)
=
7.5
cos(12°)
=
7.5
0.9781
= 7.668
Угол:
β° = 90°-α°
= 90°-12°
= 78°
Высота:
h = b·sin(α°)
= 7.5·sin(12°)
= 7.5·0.2079
= 1.559
Катет:
a = h·
c
b
= 1.559·
7.668
7.5
= 1.594
или:
a = c2 - b2
= 7.6682 - 7.52
= 58.8 - 56.25
= 2.548
= 1.596
или:
a = c·sin(α°)
= 7.668·sin(12°)
= 7.668·0.2079
= 1.594
или:
a = c·cos(β°)
= 7.668·cos(78°)
= 7.668·0.2079
= 1.594
или:
a =
h
cos(α°)
=
1.559
cos(12°)
=
1.559
0.9781
= 1.594
или:
a =
h
sin(β°)
=
1.559
sin(78°)
=
1.559
0.9781
= 1.594
или:
a =
c2 - c4- 4c2h2
2
=
7.6682 - 7.6684- 4·7.6682·1.5592
2
=
58.8 - 3457.4- 4·58.8·2.43
2
=
58.8 - 2885.9
2
= 1.594
Площадь:
S =
h·c
2
=
1.559·7.668
2
= 5.977
Радиус описанной окружности:
R =
c
2
=
7.668
2
= 3.834
Медиана:
Mc =
c
2
=
7.668
2
= 3.834
Радиус вписанной окружности:
r =
a+b-c
2
=
1.594+7.5-7.668
2
= 0.713
Периметр:
P = a+b+c
= 1.594+7.5+7.668
= 16.76
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: