меню

Решение треугольника c катетом 2,4 и углом 15 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=0.6431
b=2.4
c=2.485
15°
75°
S=0.7717
P=5.528
r=0.2791
R=1.243
h=0.6211
mc=1.243

Гипотенуза:
c =
b
cos(α°)
=
2.4
cos(15°)
=
2.4
0.9659
= 2.485

Угол:
β° = 90°-α°
= 90°-15°
= 75°

Высота:
h = b·sin(α°)
= 2.4·sin(15°)
= 2.4·0.2588
= 0.6211

Катет:
a = h·
c
b
= 0.6211·
2.485
2.4
= 0.6431
или:
a =  c2 - b2
=  2.4852 - 2.42
=  6.175 - 5.76
=  0.4152
= 0.6444
или:
a = c·sin(α°)
= 2.485·sin(15°)
= 2.485·0.2588
= 0.6431
или:
a = c·cos(β°)
= 2.485·cos(75°)
= 2.485·0.2588
= 0.6431
или:
a =
h
cos(α°)
=
0.6211
cos(15°)
=
0.6211
0.9659
= 0.643
или:
a =
h
sin(β°)
=
0.6211
sin(75°)
=
0.6211
0.9659
= 0.643
или:
a =  
c2 -  c4- 4c2h2
2
=  
2.4852 -  2.4854- 4·2.4852·0.62112
2
=  
6.175 -  38.13- 4·6.175·0.3858
2
=  
6.175 -  28.6
2
= 0.6431

Площадь:
S =
h·c
2
=
0.6211·2.485
2
= 0.7717

Радиус описанной окружности:
R =
c
2
=
2.485
2
= 1.243

Медиана:
Mc =
c
2
=
2.485
2
= 1.243

Радиус вписанной окружности:
r =
a+b-c
2
=
0.6431+2.4-2.485
2
= 0.2791

Периметр:
P = a+b+c
= 0.6431+2.4+2.485
= 5.528
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: