меню

Решение треугольника c катетом 122 и углом 5 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=10.67
b=122
c=122.47
85°
S=650.93
P=255.14
r=5.1
R=61.24
h=10.63
mc=61.24

Гипотенуза:
c =
b
cos(α°)
=
122
cos(5°)
=
122
0.9962
= 122.47

Угол:
β° = 90°-α°
= 90°-5°
= 85°

Высота:
h = b·sin(α°)
= 122·sin(5°)
= 122·0.08716
= 10.63

Катет:
a = h·
c
b
= 10.63·
122.47
122
= 10.67
или:
a =  c2 - b2
=  122.472 - 1222
=  14998.9 - 14884
=  114.9
= 10.72
или:
a = c·sin(α°)
= 122.47·sin(5°)
= 122.47·0.08716
= 10.67
или:
a = c·cos(β°)
= 122.47·cos(85°)
= 122.47·0.08716
= 10.67
или:
a =
h
cos(α°)
=
10.63
cos(5°)
=
10.63
0.9962
= 10.67
или:
a =
h
sin(β°)
=
10.63
sin(85°)
=
10.63
0.9962
= 10.67
или:
a =  
c2 -  c4- 4c2h2
2
=  
122.472 -  122.474- 4·122.472·10.632
2
=  
14998.9 -  224967001- 4·14998.9·113
2
=  
14998.9 -  218187498
2
= 10.67

Площадь:
S =
h·c
2
=
10.63·122.47
2
= 650.93

Радиус описанной окружности:
R =
c
2
=
122.47
2
= 61.24

Медиана:
Mc =
c
2
=
122.47
2
= 61.24

Радиус вписанной окружности:
r =
a+b-c
2
=
10.67+122-122.47
2
= 5.1

Периметр:
P = a+b+c
= 10.67+122+122.47
= 255.14
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: