Решение треугольника c катетом 6.70 и углом 23 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=2.844
b=6.70
c=7.279
23°
67°
S=9.528
P=16.82
r=1.133
R=3.64
h=2.618
mc=3.64
Гипотенуза:
c =
b
cos(α°)
=
6.70
cos(23°)
=
6.70
0.9205
= 7.279
Угол:
β° = 90°-α°
= 90°-23°
= 67°
Высота:
h = b·sin(α°)
= 6.70·sin(23°)
= 6.70·0.3907
= 2.618
Катет:
a = h·
c
b
= 2.618·
7.279
6.70
= 2.844
или:
a = c2 - b2
= 7.2792 - 6.702
= 52.98 - 44.89
= 8.094
= 2.845
или:
a = c·sin(α°)
= 7.279·sin(23°)
= 7.279·0.3907
= 2.844
или:
a = c·cos(β°)
= 7.279·cos(67°)
= 7.279·0.3907
= 2.844
или:
a =
h
cos(α°)
=
2.618
cos(23°)
=
2.618
0.9205
= 2.844
или:
a =
h
sin(β°)
=
2.618
sin(67°)
=
2.618
0.9205
= 2.844
или:
a =
c2 - c4- 4c2h2
2
=
7.2792 - 7.2794- 4·7.2792·2.6182
2
=
52.98 - 2806.9- 4·52.98·6.854
2
=
52.98 - 1354.4
2
= 2.844
Площадь:
S =
h·c
2
=
2.618·7.279
2
= 9.528
Радиус описанной окружности:
R =
c
2
=
7.279
2
= 3.64
Медиана:
Mc =
c
2
=
7.279
2
= 3.64
Радиус вписанной окружности:
r =
a+b-c
2
=
2.844+6.70-7.279
2
= 1.133
Периметр:
P = a+b+c
= 2.844+6.70+7.279
= 16.82
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: