Решение треугольника c катетом 3,65 и углом 25 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=1.701
b=3.65
c=4.027
25°
65°
S=3.105
P=9.378
r=0.662
R=2.014
h=1.542
mc=2.014
Гипотенуза:
c =
b
cos(α°)
=
3.65
cos(25°)
=
3.65
0.9063
= 4.027
Угол:
β° = 90°-α°
= 90°-25°
= 65°
Высота:
h = b·sin(α°)
= 3.65·sin(25°)
= 3.65·0.4226
= 1.542
Катет:
a = h·
c
b
= 1.542·
4.027
3.65
= 1.701
или:
a = c2 - b2
= 4.0272 - 3.652
= 16.22 - 13.32
= 2.894
= 1.701
или:
a = c·sin(α°)
= 4.027·sin(25°)
= 4.027·0.4226
= 1.702
или:
a = c·cos(β°)
= 4.027·cos(65°)
= 4.027·0.4226
= 1.702
или:
a =
h
cos(α°)
=
1.542
cos(25°)
=
1.542
0.9063
= 1.701
или:
a =
h
sin(β°)
=
1.542
sin(65°)
=
1.542
0.9063
= 1.701
или:
a =
c2 - c4- 4c2h2
2
=
4.0272 - 4.0274- 4·4.0272·1.5422
2
=
16.22 - 263.09- 4·16.22·2.378
2
=
16.22 - 108.81
2
= 1.701
Площадь:
S =
h·c
2
=
1.542·4.027
2
= 3.105
Радиус описанной окружности:
R =
c
2
=
4.027
2
= 2.014
Медиана:
Mc =
c
2
=
4.027
2
= 2.014
Радиус вписанной окружности:
r =
a+b-c
2
=
1.701+3.65-4.027
2
= 0.662
Периметр:
P = a+b+c
= 1.701+3.65+4.027
= 9.378
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: