меню

Решение треугольника c катетом 62 и углом 30 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=35.8
b=62
c=71.59
30°
60°
S=1109.6
P=169.39
r=13.11
R=35.8
h=31
mc=35.8

Гипотенуза:
c =
b
cos(α°)
=
62
cos(30°)
=
62
0.866
= 71.59

Угол:
β° = 90°-α°
= 90°-30°
= 60°

Высота:
h = b·sin(α°)
= 62·sin(30°)
= 62·0.5
= 31

Катет:
a = h·
c
b
= 31·
71.59
62
= 35.8
или:
a =  c2 - b2
=  71.592 - 622
=  5125.1 - 3844
=  1281.1
= 35.79
или:
a = c·sin(α°)
= 71.59·sin(30°)
= 71.59·0.5
= 35.8
или:
a = c·cos(β°)
= 71.59·cos(60°)
= 71.59·0.5
= 35.8
или:
a =
h
cos(α°)
=
31
cos(30°)
=
31
0.866
= 35.8
или:
a =
h
sin(β°)
=
31
sin(60°)
=
31
0.866
= 35.8
или:
a =  
c2 -  c4- 4c2h2
2
=  
71.592 -  71.594- 4·71.592·312
2
=  
5125.1 -  26266650- 4·5125.1·961
2
=  
5125.1 -  6565766
2
= 35.8

Площадь:
S =
h·c
2
=
31·71.59
2
= 1109.6

Радиус описанной окружности:
R =
c
2
=
71.59
2
= 35.8

Медиана:
Mc =
c
2
=
71.59
2
= 35.8

Радиус вписанной окружности:
r =
a+b-c
2
=
35.8+62-71.59
2
= 13.11

Периметр:
P = a+b+c
= 35.8+62+71.59
= 169.39
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: