Решение треугольника c катетом 60 и катетом 178 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=60
b=178
c=187.84
18.6°
71.4°
S=5340
P=425.84
r=25.08
R=93.92
h=56.86
mc=93.92

Гипотенуза:
c =  a2 + b2
=  602 + 1782
=  3600 + 31684
=  35284
= 187.84

Площадь:
S =
ab
2
=
60·178
2
= 5340

Угол:
α° = arcsin
a
c
= arcsin
60
187.84
= 18.6°

Угол:
β° = arcsin
b
c
= arcsin
178
187.84
= 71.4°

Высота:
h =
ab
c
=
60·178
187.84
= 56.86
или:
h =
2S
c
=
2 · 5340
187.84
= 56.86

Радиус вписанной окружности:
r =
a+b-c
2
=
60+178-187.84
2
= 25.08

Радиус описанной окружности:
R =
c
2
=
187.84
2
= 93.92

Периметр:
P = a+b+c
= 60+178+187.84
= 425.84

Медиана:
Mc =
c
2
=
187.84
2
= 93.92
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.