Решение треугольника c катетом 150 и углом 30 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=150
b=259.81
c=300
30°
60°
S=19485
P=709.81
r=54.91
R=150
h=129.9
mc=150

Гипотенуза:
c =
a
sin(α°)
=
150
sin(30°)
=
150
0.5
= 300

Угол:
β° = 90°-α°
= 90°-30°
= 60°

Высота:
h = a·cos(α°)
= 150·cos(30°)
= 150·0.866
= 129.9

Катет:
b = h·
c
a
= 129.9·
300
150
= 259.8
или:
b =  c2 - a2
=  3002 - 1502
=  90000 - 22500
=  67500
= 259.81
или:
b = c·sin(β°)
= 300·sin(60°)
= 300·0.866
= 259.8
или:
b = c·cos(α°)
= 300·cos(30°)
= 300·0.866
= 259.8
или:
b =
h
sin(α°)
=
129.9
sin(30°)
=
129.9
0.5
= 259.8
или:
b =
h
cos(β°)
=
129.9
cos(60°)
=
129.9
0.5
= 259.8
или:
b =  
c2 +  c4- 4c2h2
2
=  
3002 +  3004- 4·3002·129.92
2
=  
90000 +  8100000000- 4·90000·16874
2
=  
90000 +  2025360000
2
= 259.81

Площадь:
S =
h·c
2
=
129.9·300
2
= 19485

Радиус описанной окружности:
R =
c
2
=
300
2
= 150

Медиана:
Mc =
c
2
=
300
2
= 150

Радиус вписанной окружности:
r =
a+b-c
2
=
150+259.81-300
2
= 54.91

Периметр:
P = a+b+c
= 150+259.81+300
= 709.81
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.