Решение треугольника c гипотенузой 3,25 и углом 12 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=0.6757
b=3.179
c=3.25
12°
78°
S=1.074
P=7.105
r=0.3024
R=1.625
h=0.6609
mc=1.625

Катет:
a = c·sin(α°)
= 3.25·sin(12°)
= 3.25·0.2079
= 0.6757

Катет:
b = c·cos(α°)
= 3.25·cos(12°)
= 3.25·0.9781
= 3.179

Угол:
β° = 90°-α°
= 90°-12°
= 78°

Радиус описанной окружности:
R =
c
2
=
3.25
2
= 1.625

Медиана:
Mc =
c
2
=
3.25
2
= 1.625

Высота:
h =
ab
c
=
0.6757·3.179
3.25
= 0.6609
или:
h = b·sin(α°)
= 3.179·sin(12°)
= 3.179·0.2079
= 0.6609
или:
h = b·cos(β°)
= 3.179·cos(78°)
= 3.179·0.2079
= 0.6609
или:
h = a·cos(α°)
= 0.6757·cos(12°)
= 0.6757·0.9781
= 0.6609
или:
h = a·sin(β°)
= 0.6757·sin(78°)
= 0.6757·0.9781
= 0.6609

Площадь:
S =
ab
2
=
0.6757·3.179
2
= 1.074

Радиус вписанной окружности:
r =
a+b-c
2
=
0.6757+3.179-3.25
2
= 0.3024

Периметр:
P = a+b+c
= 0.6757+3.179+3.25
= 7.105
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.