меню

Решение треугольника c катетом 250 и углом 26 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=121.94
b=250
c=278.15
26°
64°
S=15242.6
P=650.09
r=46.9
R=139.08
h=109.6
mc=139.08

Гипотенуза:
c =
b
cos(α°)
=
250
cos(26°)
=
250
0.8988
= 278.15

Угол:
β° = 90°-α°
= 90°-26°
= 64°

Высота:
h = b·sin(α°)
= 250·sin(26°)
= 250·0.4384
= 109.6

Катет:
a = h·
c
b
= 109.6·
278.15
250
= 121.94
или:
a =  c2 - b2
=  278.152 - 2502
=  77367.4 - 62500
=  14867.4
= 121.93
или:
a = c·sin(α°)
= 278.15·sin(26°)
= 278.15·0.4384
= 121.94
или:
a = c·cos(β°)
= 278.15·cos(64°)
= 278.15·0.4384
= 121.94
или:
a =
h
cos(α°)
=
109.6
cos(26°)
=
109.6
0.8988
= 121.94
или:
a =
h
sin(β°)
=
109.6
sin(64°)
=
109.6
0.8988
= 121.94
или:
a =  
c2 -  c4- 4c2h2
2
=  
278.152 -  278.154- 4·278.152·109.62
2
=  
77367.4 -  5985714583- 4·77367.4·12012.2
2
=  
77367.4 -  2268303854
2
= 121.94

Площадь:
S =
h·c
2
=
109.6·278.15
2
= 15242.6

Радиус описанной окружности:
R =
c
2
=
278.15
2
= 139.08

Медиана:
Mc =
c
2
=
278.15
2
= 139.08

Радиус вписанной окружности:
r =
a+b-c
2
=
121.94+250-278.15
2
= 46.9

Периметр:
P = a+b+c
= 121.94+250+278.15
= 650.09
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: