Решение треугольника c катетом 300 и углом 0,11 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=0.576
b=300
c=300
0.11°
89.9°
S=86.4
P=600.58
r=0.288
R=150
h=0.576
mc=150
Гипотенуза:
c =
b
cos(α°)
=
300
cos(0.11°)
=
300
1
= 300
Угол:
β° = 90°-α°
= 90°-0.11°
= 89.9°
Высота:
h = b·sin(α°)
= 300·sin(0.11°)
= 300·0.00192
= 0.576
Катет:
a = h·
c
b
= 0.576·
300
300
= 0.576
или:
a = c2 - b2
= 3002 - 3002
= 90000 - 90000
= 0
= 0
или:
a = c·sin(α°)
= 300·sin(0.11°)
= 300·0.00192
= 0.576
или:
a = c·cos(β°)
= 300·cos(89.9°)
= 300·0.001745
= 0.5235
или:
a =
h
cos(α°)
=
0.576
cos(0.11°)
=
0.576
1
= 0.576
или:
a =
h
sin(β°)
=
0.576
sin(89.9°)
=
0.576
1
= 0.576
или:
a =
c2 - c4- 4c2h2
2
=
3002 - 3004- 4·3002·0.5762
2
=
90000 - 8100000000- 4·90000·0.3318
2
=
90000 - 8099880552
2
= 0.576
Площадь:
S =
h·c
2
=
0.576·300
2
= 86.4
Радиус описанной окружности:
R =
c
2
=
300
2
= 150
Медиана:
Mc =
c
2
=
300
2
= 150
Радиус вписанной окружности:
r =
a+b-c
2
=
0.576+300-300
2
= 0.288
Периметр:
P = a+b+c
= 0.576+300+300
= 600.58
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: