меню

Решение треугольника c катетом 85 и углом 1000 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=85
b=85
c=-86.31
1000°
-910°
S=-636.97
P=83.69
r=128.16
R=-43.16
h=14.76
mc=-43.16

Гипотенуза:
c =
a
sin(α°)
=
85
sin(1000°)
=
85
-0.9848
= -86.31

Угол:
β° = 90°-α°
= 90°-1000°
= -910°

Высота:
h = a·cos(α°)
= 85·cos(1000°)
= 85·0.1736
= 14.76

Катет:
b = h·
c
a
= 14.76·
-86.31
85
= -14.99
или:
b =  c2 - a2
=  -86.312 - 852
=  7449.4 - 7225
=  224.42
= 14.98
или:
b = c·sin(β°)
= -86.31·sin(-910°)
= -86.31·0.1736
= -14.98
или:
b = c·cos(α°)
= -86.31·cos(1000°)
= -86.31·0.1736
= -14.98
или:
b =
h
sin(α°)
=
14.76
sin(1000°)
=
14.76
-0.9848
= -14.99
или:
b =
h
cos(β°)
=
14.76
cos(-910°)
=
14.76
-0.9848
= -14.99
или:
b =  
c2 +  c4- 4c2h2
2
=  
-86.312 +  -86.314- 4·-86.312·14.762
2
=  
7449.4 +  55493560- 4·7449.4·217.86
2
=  
7449.4 +  49001855
2
= 85

Площадь:
S =
h·c
2
=
14.76·-86.31
2
= -636.97

Радиус описанной окружности:
R =
c
2
=
-86.31
2
= -43.16

Медиана:
Mc =
c
2
=
-86.31
2
= -43.16

Радиус вписанной окружности:
r =
a+b-c
2
=
85+85--86.31
2
= 128.16

Периметр:
P = a+b+c
= 85+85+-86.31
= 83.69
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: