меню

Решение треугольника c катетом 144 и углом 6,3 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=15.9
b=144
c=144.87
6.3°
83.7°
S=1144.5
P=304.77
r=7.515
R=72.44
h=15.8
mc=72.44

Гипотенуза:
c =
b
cos(α°)
=
144
cos(6.3°)
=
144
0.994
= 144.87

Угол:
β° = 90°-α°
= 90°-6.3°
= 83.7°

Высота:
h = b·sin(α°)
= 144·sin(6.3°)
= 144·0.1097
= 15.8

Катет:
a = h·
c
b
= 15.8·
144.87
144
= 15.9
или:
a =  c2 - b2
=  144.872 - 1442
=  20987.3 - 20736
=  251.32
= 15.85
или:
a = c·sin(α°)
= 144.87·sin(6.3°)
= 144.87·0.1097
= 15.89
или:
a = c·cos(β°)
= 144.87·cos(83.7°)
= 144.87·0.1097
= 15.89
или:
a =
h
cos(α°)
=
15.8
cos(6.3°)
=
15.8
0.994
= 15.9
или:
a =
h
sin(β°)
=
15.8
sin(83.7°)
=
15.8
0.994
= 15.9
или:
a =  
c2 -  c4- 4c2h2
2
=  
144.872 -  144.874- 4·144.872·15.82
2
=  
20987.3 -  440466761- 4·20987.3·249.64
2
=  
20987.3 -  419509683
2
= 15.9

Площадь:
S =
h·c
2
=
15.8·144.87
2
= 1144.5

Радиус описанной окружности:
R =
c
2
=
144.87
2
= 72.44

Медиана:
Mc =
c
2
=
144.87
2
= 72.44

Радиус вписанной окружности:
r =
a+b-c
2
=
15.9+144-144.87
2
= 7.515

Периметр:
P = a+b+c
= 15.9+144+144.87
= 304.77
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: