Решение треугольника c катетом 14 и углом 20 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=14
b=14
c=14.9
70°
20°
S=35.67
P=42.9
r=6.55
R=7.45
h=4.788
mc=7.45
Гипотенуза:
c =
a
cos(β°)
=
14
cos(20°)
=
14
0.9397
= 14.9
Угол:
α° = 90°-β°
= 90°-20°
= 70°
Высота:
h = a·sin(β°)
= 14·sin(20°)
= 14·0.342
= 4.788
Катет:
b = h·
c
a
= 4.788·
14.9
14
= 5.096
или:
b = c2 - a2
= 14.92 - 142
= 222.01 - 196
= 26.01
= 5.1
или:
b = c·sin(β°)
= 14.9·sin(20°)
= 14.9·0.342
= 5.096
или:
b = c·cos(α°)
= 14.9·cos(70°)
= 14.9·0.342
= 5.096
или:
b =
h
sin(α°)
=
4.788
sin(70°)
=
4.788
0.9397
= 5.095
или:
b =
h
cos(β°)
=
4.788
cos(20°)
=
4.788
0.9397
= 5.095
или:
b =
c2 + c4- 4c2h2
2
=
14.92 + 14.94- 4·14.92·4.7882
2
=
222.01 + 49288.4- 4·222.01·22.92
2
=
222.01 + 28934.5
2
= 14
Площадь:
S =
h·c
2
=
4.788·14.9
2
= 35.67
Радиус описанной окружности:
R =
c
2
=
14.9
2
= 7.45
Медиана:
Mc =
c
2
=
14.9
2
= 7.45
Радиус вписанной окружности:
r =
a+b-c
2
=
14+14-14.9
2
= 6.55
Периметр:
P = a+b+c
= 14+14+14.9
= 42.9
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: