Решение треугольника c катетом 1500 и катетом 1500 и углом 45 и углом 45 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=1500
b=1500
c=2121.3
45°
45°
S=1125000
P=5121.3
r=439.35
R=1060.7
h=1060.7
mc=1060.7
Гипотенуза:
c = a2 + b2
= 15002 + 15002
= 2250000 + 2250000
= 4500000
= 2121.3
или:
c =
a
sin(α°)
=
1500
sin(45°)
=
1500
0.7071
= 2121.3
или:
c =
b
sin(β°)
=
1500
sin(45°)
=
1500
0.7071
= 2121.3
или:
c =
b
cos(α°)
=
1500
cos(45°)
=
1500
0.7071
= 2121.3
или:
c =
a
cos(β°)
=
1500
cos(45°)
=
1500
0.7071
= 2121.3
Высота:
h = b·sin(α°)
= 1500·sin(45°)
= 1500·0.7071
= 1060.7
или:
h = b·cos(β°)
= 1500·cos(45°)
= 1500·0.7071
= 1060.7
или:
h = a·cos(α°)
= 1500·cos(45°)
= 1500·0.7071
= 1060.7
или:
h = a·sin(β°)
= 1500·sin(45°)
= 1500·0.7071
= 1060.7
Площадь:
S =
ab
2
=
1500·1500
2
= 1125000
Радиус вписанной окружности:
r =
a+b-c
2
=
1500+1500-2121.3
2
= 439.35
Радиус описанной окружности:
R =
c
2
=
2121.3
2
= 1060.7
Периметр:
P = a+b+c
= 1500+1500+2121.3
= 5121.3
Медиана:
Mc =
c
2
=
2121.3
2
= 1060.7
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: