Решение треугольника c катетом 4.85 и гипотенузой 6.10 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=3.7
b=4.85
c=6.10
37.3°
52.7°
S=8.973
P=14.65
r=1.225
R=3.05
h=2.943
mc=3.05

Катет:
a =  c2 - b2
=  6.102 - 4.852
=  37.21 - 23.52
=  13.69
= 3.7

Угол:
β° = arcsin
b
c
= arcsin
4.85
6.10
= 52.7°

Радиус описанной окружности:
R =
c
2
=
6.10
2
= 3.05

Медиана:
Mc =
c
2
=
6.10
2
= 3.05

Угол:
α° = arcsin
a
c
= arcsin
3.7
6.10
= 37.3°
или:
α° = 90°-β°
= 90°-52.7°
= 37.3°

Высота:
h =
ab
c
=
3.7·4.85
6.10
= 2.942
или:
h = b·cos(β°)
= 4.85·cos(52.7°)
= 4.85·0.606
= 2.939
или:
h = a·sin(β°)
= 3.7·sin(52.7°)
= 3.7·0.7955
= 2.943

Площадь:
S =
ab
2
=
3.7·4.85
2
= 8.973

Радиус вписанной окружности:
r =
a+b-c
2
=
3.7+4.85-6.10
2
= 1.225

Периметр:
P = a+b+c
= 3.7+4.85+6.10
= 14.65
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.