меню

Решение треугольника c катетом 350 и углом 10 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=61.7
b=350
c=355.4
10°
80°
S=10797.1
P=767.1
r=28.15
R=177.7
h=60.76
mc=177.7

Гипотенуза:
c =
b
cos(α°)
=
350
cos(10°)
=
350
0.9848
= 355.4

Угол:
β° = 90°-α°
= 90°-10°
= 80°

Высота:
h = b·sin(α°)
= 350·sin(10°)
= 350·0.1736
= 60.76

Катет:
a = h·
c
b
= 60.76·
355.4
350
= 61.7
или:
a =  c2 - b2
=  355.42 - 3502
=  126309.2 - 122500
=  3809.2
= 61.72
или:
a = c·sin(α°)
= 355.4·sin(10°)
= 355.4·0.1736
= 61.7
или:
a = c·cos(β°)
= 355.4·cos(80°)
= 355.4·0.1736
= 61.7
или:
a =
h
cos(α°)
=
60.76
cos(10°)
=
60.76
0.9848
= 61.7
или:
a =
h
sin(β°)
=
60.76
sin(80°)
=
60.76
0.9848
= 61.7
или:
a =  
c2 -  c4- 4c2h2
2
=  
355.42 -  355.44- 4·355.42·60.762
2
=  
126309.2 -  15954014005- 4·126309.2·3691.8
2
=  
126309.2 -  14088780787
2
= 61.7

Площадь:
S =
h·c
2
=
60.76·355.4
2
= 10797.1

Радиус описанной окружности:
R =
c
2
=
355.4
2
= 177.7

Медиана:
Mc =
c
2
=
355.4
2
= 177.7

Радиус вписанной окружности:
r =
a+b-c
2
=
61.7+350-355.4
2
= 28.15

Периметр:
P = a+b+c
= 61.7+350+355.4
= 767.1
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: