Решение треугольника c катетом 155 и катетом 260 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=155
b=260
c=302.7
30.8°
59.2°
S=20150
P=717.7
r=56.15
R=151.35
h=133.14
mc=151.35

Гипотенуза:
c =  a2 + b2
=  1552 + 2602
=  24025 + 67600
=  91625
= 302.7

Площадь:
S =
ab
2
=
155·260
2
= 20150

Угол:
α° = arcsin
a
c
= arcsin
155
302.7
= 30.8°

Угол:
β° = arcsin
b
c
= arcsin
260
302.7
= 59.2°

Высота:
h =
ab
c
=
155·260
302.7
= 133.14
или:
h =
2S
c
=
2 · 20150
302.7
= 133.14

Радиус вписанной окружности:
r =
a+b-c
2
=
155+260-302.7
2
= 56.15

Радиус описанной окружности:
R =
c
2
=
302.7
2
= 151.35

Периметр:
P = a+b+c
= 155+260+302.7
= 717.7

Медиана:
Mc =
c
2
=
302.7
2
= 151.35
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.