Решение треугольника c катетом 6000 и углом 20 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=2183.7
b=6000
c=6385
20°
70°
S=6551010
P=14568.7
r=899.35
R=3192.5
h=2052
mc=3192.5

Гипотенуза:
c =
b
cos(α°)
=
6000
cos(20°)
=
6000
0.9397
= 6385

Угол:
β° = 90°-α°
= 90°-20°
= 70°

Высота:
h = b·sin(α°)
= 6000·sin(20°)
= 6000·0.342
= 2052

Катет:
a = h·
c
b
= 2052·
6385
6000
= 2183.7
или:
a =  c2 - b2
=  63852 - 60002
=  40768225 - 36000000
=  4768225
= 2183.6
или:
a = c·sin(α°)
= 6385·sin(20°)
= 6385·0.342
= 2183.7
или:
a = c·cos(β°)
= 6385·cos(70°)
= 6385·0.342
= 2183.7
или:
a =
h
cos(α°)
=
2052
cos(20°)
=
2052
0.9397
= 2183.7
или:
a =
h
sin(β°)
=
2052
sin(70°)
=
2052
0.9397
= 2183.7
или:
a =  
c2 -  c4- 4c2h2
2
=  
63852 -  63854- 4·63852·20522
2
=  
40768225 -  1.6620481696506E+15- 4·40768225·4210704
2
=  
40768225 -  9.7539645732902E+14
2
= 2183.7

Площадь:
S =
h·c
2
=
2052·6385
2
= 6551010

Радиус описанной окружности:
R =
c
2
=
6385
2
= 3192.5

Медиана:
Mc =
c
2
=
6385
2
= 3192.5

Радиус вписанной окружности:
r =
a+b-c
2
=
2183.7+6000-6385
2
= 899.35

Периметр:
P = a+b+c
= 2183.7+6000+6385
= 14568.7
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.