меню

Решение треугольника c катетом 23 и углом 31 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=13.83
b=23
c=26.83
31°
59°
S=158.97
P=63.66
r=5
R=13.42
h=11.85
mc=13.42

Гипотенуза:
c =
b
cos(α°)
=
23
cos(31°)
=
23
0.8572
= 26.83

Угол:
β° = 90°-α°
= 90°-31°
= 59°

Высота:
h = b·sin(α°)
= 23·sin(31°)
= 23·0.515
= 11.85

Катет:
a = h·
c
b
= 11.85·
26.83
23
= 13.82
или:
a =  c2 - b2
=  26.832 - 232
=  719.85 - 529
=  190.85
= 13.81
или:
a = c·sin(α°)
= 26.83·sin(31°)
= 26.83·0.515
= 13.82
или:
a = c·cos(β°)
= 26.83·cos(59°)
= 26.83·0.515
= 13.82
или:
a =
h
cos(α°)
=
11.85
cos(31°)
=
11.85
0.8572
= 13.82
или:
a =
h
sin(β°)
=
11.85
sin(59°)
=
11.85
0.8572
= 13.82
или:
a =  
c2 -  c4- 4c2h2
2
=  
26.832 -  26.834- 4·26.832·11.852
2
=  
719.85 -  518184- 4·719.85·140.42
2
=  
719.85 -  113858.7
2
= 13.83

Площадь:
S =
h·c
2
=
11.85·26.83
2
= 158.97

Радиус описанной окружности:
R =
c
2
=
26.83
2
= 13.42

Медиана:
Mc =
c
2
=
26.83
2
= 13.42

Радиус вписанной окружности:
r =
a+b-c
2
=
13.83+23-26.83
2
= 5

Периметр:
P = a+b+c
= 13.83+23+26.83
= 63.66
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: