Решение треугольника c катетом 27 и углом 37 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=20.35
b=27
c=33.81
37°
53°
S=274.71
P=81.16
r=6.77
R=16.91
h=16.25
mc=16.91
Гипотенуза:
c =
b
cos(α°)
=
27
cos(37°)
=
27
0.7986
= 33.81
Угол:
β° = 90°-α°
= 90°-37°
= 53°
Высота:
h = b·sin(α°)
= 27·sin(37°)
= 27·0.6018
= 16.25
Катет:
a = h·
c
b
= 16.25·
33.81
27
= 20.35
или:
a = c2 - b2
= 33.812 - 272
= 1143.1 - 729
= 414.12
= 20.35
или:
a = c·sin(α°)
= 33.81·sin(37°)
= 33.81·0.6018
= 20.35
или:
a = c·cos(β°)
= 33.81·cos(53°)
= 33.81·0.6018
= 20.35
или:
a =
h
cos(α°)
=
16.25
cos(37°)
=
16.25
0.7986
= 20.35
или:
a =
h
sin(β°)
=
16.25
sin(53°)
=
16.25
0.7986
= 20.35
или:
a =
c2 - c4- 4c2h2
2
=
33.812 - 33.814- 4·33.812·16.252
2
=
1143.1 - 1306678- 4·1143.1·264.06
2
=
1143.1 - 99290.1
2
= 20.35
Площадь:
S =
h·c
2
=
16.25·33.81
2
= 274.71
Радиус описанной окружности:
R =
c
2
=
33.81
2
= 16.91
Медиана:
Mc =
c
2
=
33.81
2
= 16.91
Радиус вписанной окружности:
r =
a+b-c
2
=
20.35+27-33.81
2
= 6.77
Периметр:
P = a+b+c
= 20.35+27+33.81
= 81.16
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: