Решение треугольника c катетом 32000 и углом 30 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=18474.9
b=32000
c=36951.5
30°
60°
S=295612000
P=87426.4
r=6761.7
R=18475.8
h=16000
mc=18475.8

Гипотенуза:
c =
b
cos(α°)
=
32000
cos(30°)
=
32000
0.866
= 36951.5

Угол:
β° = 90°-α°
= 90°-30°
= 60°

Высота:
h = b·sin(α°)
= 32000·sin(30°)
= 32000·0.5
= 16000

Катет:
a = h·
c
b
= 16000·
36951.5
32000
= 18475.8
или:
a =  c2 - b2
=  36951.52 - 320002
=  1365413352 - 1024000000
=  341413352
= 18477.4
или:
a = c·sin(α°)
= 36951.5·sin(30°)
= 36951.5·0.5
= 18475.8
или:
a = c·cos(β°)
= 36951.5·cos(60°)
= 36951.5·0.5
= 18475.8
или:
a =
h
cos(α°)
=
16000
cos(30°)
=
16000
0.866
= 18475.8
или:
a =
h
sin(β°)
=
16000
sin(60°)
=
16000
0.866
= 18475.8
или:
a =  
c2 -  c4- 4c2h2
2
=  
36951.52 -  36951.54- 4·36951.52·160002
2
=  
1365413352 -  1.8643536218199E+18- 4·1365413352·256000000
2
=  
1365413352 -  4.6617034937188E+17
2
= 18474.9

Площадь:
S =
h·c
2
=
16000·36951.5
2
= 295612000

Радиус описанной окружности:
R =
c
2
=
36951.5
2
= 18475.8

Медиана:
Mc =
c
2
=
36951.5
2
= 18475.8

Радиус вписанной окружности:
r =
a+b-c
2
=
18474.9+32000-36951.5
2
= 6761.7

Периметр:
P = a+b+c
= 18474.9+32000+36951.5
= 87426.4
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.