Решение треугольника c катетом 4,3 и углом 10 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=0.7581
b=4.3
c=4.366
10°
80°
S=1.63
P=9.424
r=0.3461
R=2.183
h=0.7465
mc=2.183

Гипотенуза:
c =
b
cos(α°)
=
4.3
cos(10°)
=
4.3
0.9848
= 4.366

Угол:
β° = 90°-α°
= 90°-10°
= 80°

Высота:
h = b·sin(α°)
= 4.3·sin(10°)
= 4.3·0.1736
= 0.7465

Катет:
a = h·
c
b
= 0.7465·
4.366
4.3
= 0.758
или:
a =  c2 - b2
=  4.3662 - 4.32
=  19.06 - 18.49
=  0.572
= 0.7563
или:
a = c·sin(α°)
= 4.366·sin(10°)
= 4.366·0.1736
= 0.7579
или:
a = c·cos(β°)
= 4.366·cos(80°)
= 4.366·0.1736
= 0.7579
или:
a =
h
cos(α°)
=
0.7465
cos(10°)
=
0.7465
0.9848
= 0.758
или:
a =
h
sin(β°)
=
0.7465
sin(80°)
=
0.7465
0.9848
= 0.758
или:
a =  
c2 -  c4- 4c2h2
2
=  
4.3662 -  4.3664- 4·4.3662·0.74652
2
=  
19.06 -  363.28- 4·19.06·0.5573
2
=  
19.06 -  320.79
2
= 0.7581

Площадь:
S =
h·c
2
=
0.7465·4.366
2
= 1.63

Радиус описанной окружности:
R =
c
2
=
4.366
2
= 2.183

Медиана:
Mc =
c
2
=
4.366
2
= 2.183

Радиус вписанной окружности:
r =
a+b-c
2
=
0.7581+4.3-4.366
2
= 0.3461

Периметр:
P = a+b+c
= 0.7581+4.3+4.366
= 9.424
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.