Решение треугольника c гипотенузой 11 и высотой 2.2 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=2.247
b=10.77
c=11
11.8°
78.3°
S=12.1
P=24.02
r=1.009
R=5.5
h=2.2
mc=5.5

Катет:
a =  
c2 -  c4- 4c2h2
2
=  
112 -  114- 4·112·2.22
2
=  
121 -  14641- 4·121·4.84
2
=  
121 -  12298.4
2
= 2.247

Катет:
b =  
c2 +  c4- 4c2h2
2
=  
112 +  114- 4·112·2.22
2
=  
121 +  14641- 4·121·4.84
2
=  
121 +  12298.4
2
= 10.77

Площадь:
S =
h·c
2
=
2.2·11
2
= 12.1

Радиус описанной окружности:
R =
c
2
=
11
2
= 5.5

Медиана:
Mc =
c
2
=
11
2
= 5.5

Угол:
α° = arcsin
a
c
= arcsin
2.247
11
= 11.8°

Угол:
β° = arcsin
b
c
= arcsin
10.77
11
= 78.3°

Радиус вписанной окружности:
r =
a+b-c
2
=
2.247+10.77-11
2
= 1.009

Периметр:
P = a+b+c
= 2.247+10.77+11
= 24.02
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.