Решение треугольника c гипотенузой 5 и углом 45 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=3.536
b=3.536
c=5
45°
45°
S=6.252
P=12.07
r=1.036
R=2.5
h=2.5
mc=2.5

Катет:
a = c·sin(α°)
= 5·sin(45°)
= 5·0.7071
= 3.536

Катет:
b = c·cos(α°)
= 5·cos(45°)
= 5·0.7071
= 3.536

Угол:
β° = 90°-α°
= 90°-45°
= 45°

Радиус описанной окружности:
R =
c
2
=
5
2
= 2.5

Медиана:
Mc =
c
2
=
5
2
= 2.5

Высота:
h =
ab
c
=
3.536·3.536
5
= 2.501
или:
h = b·sin(α°)
= 3.536·sin(45°)
= 3.536·0.7071
= 2.5
или:
h = b·cos(β°)
= 3.536·cos(45°)
= 3.536·0.7071
= 2.5
или:
h = a·cos(α°)
= 3.536·cos(45°)
= 3.536·0.7071
= 2.5
или:
h = a·sin(β°)
= 3.536·sin(45°)
= 3.536·0.7071
= 2.5

Площадь:
S =
ab
2
=
3.536·3.536
2
= 6.252

Радиус вписанной окружности:
r =
a+b-c
2
=
3.536+3.536-5
2
= 1.036

Периметр:
P = a+b+c
= 3.536+3.536+5
= 12.07
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.