Решение треугольника c катетом 2,2 и гипотенузой 6,55 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=2.2
b=6.169
c=6.55
19.6°
70.4°
S=6.786
P=14.92
r=0.9095
R=3.275
h=2.073
mc=3.275

Катет:
b =  c2 - a2
=  6.552 - 2.22
=  42.9 - 4.84
=  38.06
= 6.169

Угол:
α° = arcsin
a
c
= arcsin
2.2
6.55
= 19.6°

Радиус описанной окружности:
R =
c
2
=
6.55
2
= 3.275

Медиана:
Mc =
c
2
=
6.55
2
= 3.275

Угол:
β° = arcsin
b
c
= arcsin
6.169
6.55
= 70.4°
или:
β° = 90°-α°
= 90°-19.6°
= 70.4°

Высота:
h =
ab
c
=
2.2·6.169
6.55
= 2.072
или:
h = b·sin(α°)
= 6.169·sin(19.6°)
= 6.169·0.3355
= 2.07
или:
h = a·cos(α°)
= 2.2·cos(19.6°)
= 2.2·0.9421
= 2.073

Площадь:
S =
ab
2
=
2.2·6.169
2
= 6.786

Радиус вписанной окружности:
r =
a+b-c
2
=
2.2+6.169-6.55
2
= 0.9095

Периметр:
P = a+b+c
= 2.2+6.169+6.55
= 14.92
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.