Решение треугольника c катетом 200 и углом 22 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=200
b=199.99
c=215.7
68°
22°
S=8080.1
P=615.69
r=92.15
R=107.85
h=74.92
mc=107.85

Гипотенуза:
c =
a
cos(β°)
=
200
cos(22°)
=
200
0.9272
= 215.7

Угол:
α° = 90°-β°
= 90°-22°
= 68°

Высота:
h = a·sin(β°)
= 200·sin(22°)
= 200·0.3746
= 74.92

Катет:
b = h·
c
a
= 74.92·
215.7
200
= 80.8
или:
b =  c2 - a2
=  215.72 - 2002
=  46526.5 - 40000
=  6526.5
= 80.79
или:
b = c·sin(β°)
= 215.7·sin(22°)
= 215.7·0.3746
= 80.8
или:
b = c·cos(α°)
= 215.7·cos(68°)
= 215.7·0.3746
= 80.8
или:
b =
h
sin(α°)
=
74.92
sin(68°)
=
74.92
0.9272
= 80.8
или:
b =
h
cos(β°)
=
74.92
cos(22°)
=
74.92
0.9272
= 80.8
или:
b =  
c2 +  c4- 4c2h2
2
=  
215.72 +  215.74- 4·215.72·74.922
2
=  
46526.5 +  2164715202- 4·46526.5·5613
2
=  
46526.5 +  1120102224
2
= 199.99

Площадь:
S =
h·c
2
=
74.92·215.7
2
= 8080.1

Радиус описанной окружности:
R =
c
2
=
215.7
2
= 107.85

Медиана:
Mc =
c
2
=
215.7
2
= 107.85

Радиус вписанной окружности:
r =
a+b-c
2
=
200+199.99-215.7
2
= 92.15

Периметр:
P = a+b+c
= 200+199.99+215.7
= 615.69
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.