Решение треугольника c катетом 8 и катетом 5.602 и углом 55 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=8
b=5.602
c=9.766
55°
35°
S=22.41
P=23.37
r=1.918
R=4.883
h=4.589
mc=4.883

Гипотенуза:
c =  a2 + b2
=  82 + 5.6022
=  64 + 31.38
=  95.38
= 9.766
или:
c =
a
sin(α°)
=
8
sin(55°)
=
8
0.8192
= 9.766
или:
c =
b
cos(α°)
=
5.602
cos(55°)
=
5.602
0.5736
= 9.766

Угол:
β° = 90°-α°
= 90°-55°
= 35°

Высота:
h = b·sin(α°)
= 5.602·sin(55°)
= 5.602·0.8192
= 4.589
или:
h = a·cos(α°)
= 8·cos(55°)
= 8·0.5736
= 4.589

Площадь:
S =
ab
2
=
8·5.602
2
= 22.41

Радиус вписанной окружности:
r =
a+b-c
2
=
8+5.602-9.766
2
= 1.918

Радиус описанной окружности:
R =
c
2
=
9.766
2
= 4.883

Периметр:
P = a+b+c
= 8+5.602+9.766
= 23.37

Медиана:
Mc =
c
2
=
9.766
2
= 4.883
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.