меню

Решение треугольника c гипотенузой 37 и высотой 10 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=10.42
b=35.5
c=37
16.4°
73.6°
S=185
P=82.92
r=4.46
R=18.5
h=10
mc=18.5

Катет:
a =  
c2 -  c4- 4c2h2
2
=  
372 -  374- 4·372·102
2
=  
1369 -  1874161- 4·1369·100
2
=  
1369 -  1326561
2
= 10.42

Катет:
b =  
c2 +  c4- 4c2h2
2
=  
372 +  374- 4·372·102
2
=  
1369 +  1874161- 4·1369·100
2
=  
1369 +  1326561
2
= 35.5

Площадь:
S =
h·c
2
=
10·37
2
= 185

Радиус описанной окружности:
R =
c
2
=
37
2
= 18.5

Медиана:
Mc =
c
2
=
37
2
= 18.5

Угол:
α° = arcsin
a
c
= arcsin
10.42
37
= 16.4°

Угол:
β° = arcsin
b
c
= arcsin
35.5
37
= 73.6°

Радиус вписанной окружности:
r =
a+b-c
2
=
10.42+35.5-37
2
= 4.46

Периметр:
P = a+b+c
= 10.42+35.5+37
= 82.92
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: