Решение треугольника c катетом 1,2 и углом 35 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=0.8404
b=1.2
c=1.465
35°
55°
S=0.5042
P=3.505
r=0.2877
R=0.7325
h=0.6883
mc=0.7325

Гипотенуза:
c =
b
cos(α°)
=
1.2
cos(35°)
=
1.2
0.8192
= 1.465

Угол:
β° = 90°-α°
= 90°-35°
= 55°

Высота:
h = b·sin(α°)
= 1.2·sin(35°)
= 1.2·0.5736
= 0.6883

Катет:
a = h·
c
b
= 0.6883·
1.465
1.2
= 0.8403
или:
a =  c2 - b2
=  1.4652 - 1.22
=  2.146 - 1.44
=  0.7062
= 0.8404
или:
a = c·sin(α°)
= 1.465·sin(35°)
= 1.465·0.5736
= 0.8403
или:
a = c·cos(β°)
= 1.465·cos(55°)
= 1.465·0.5736
= 0.8403
или:
a =
h
cos(α°)
=
0.6883
cos(35°)
=
0.6883
0.8192
= 0.8402
или:
a =
h
sin(β°)
=
0.6883
sin(55°)
=
0.6883
0.8192
= 0.8402
или:
a =  
c2 -  c4- 4c2h2
2
=  
1.4652 -  1.4654- 4·1.4652·0.68832
2
=  
2.146 -  4.605- 4·2.146·0.4738
2
=  
2.146 -  0.5379
2
= 0.8404

Площадь:
S =
h·c
2
=
0.6883·1.465
2
= 0.5042

Радиус описанной окружности:
R =
c
2
=
1.465
2
= 0.7325

Медиана:
Mc =
c
2
=
1.465
2
= 0.7325

Радиус вписанной окружности:
r =
a+b-c
2
=
0.8404+1.2-1.465
2
= 0.2877

Периметр:
P = a+b+c
= 0.8404+1.2+1.465
= 3.505
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.