меню

Решение треугольника c катетом 5,6 и катетом 3 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=5.6
b=3
c=6.353
61.8°
28.2°
S=8.4
P=14.95
r=1.124
R=3.177
h=2.644
mc=3.177

Гипотенуза:
c =  a2 + b2
=  5.62 + 32
=  31.36 + 9
=  40.36
= 6.353

Площадь:
S =
ab
2
=
5.6·3
2
= 8.4

Угол:
α° = arcsin
a
c
= arcsin
5.6
6.353
= 61.8°

Угол:
β° = arcsin
b
c
= arcsin
3
6.353
= 28.2°

Высота:
h =
ab
c
=
5.6·3
6.353
= 2.644
или:
h =
2S
c
=
2 · 8.4
6.353
= 2.644

Радиус вписанной окружности:
r =
a+b-c
2
=
5.6+3-6.353
2
= 1.124

Радиус описанной окружности:
R =
c
2
=
6.353
2
= 3.177

Периметр:
P = a+b+c
= 5.6+3+6.353
= 14.95

Медиана:
Mc =
c
2
=
6.353
2
= 3.177
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: