Решение треугольника c катетом 120 и катетом 60 и углом 20 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=120
b=60
c=63.85
20°
70°
S=3600
P=243.85
r=58.08
R=31.93
h=112.76
mc=31.93

Гипотенуза:
c =  a2 + b2
=  1202 + 602
=  14400 + 3600
=  18000
= 134.16
или:
c =
a
sin(α°)
=
120
sin(20°)
=
120
0.342
= 350.88
или:
c =
b
cos(α°)
=
60
cos(20°)
=
60
0.9397
= 63.85

Угол:
β° = 90°-α°
= 90°-20°
= 70°

Высота:
h = b·sin(α°)
= 60·sin(20°)
= 60·0.342
= 20.52
или:
h = a·cos(α°)
= 120·cos(20°)
= 120·0.9397
= 112.76

Площадь:
S =
ab
2
=
120·60
2
= 3600

Радиус вписанной окружности:
r =
a+b-c
2
=
120+60-63.85
2
= 58.08

Радиус описанной окружности:
R =
c
2
=
63.85
2
= 31.93

Периметр:
P = a+b+c
= 120+60+63.85
= 243.85

Медиана:
Mc =
c
2
=
63.85
2
= 31.93
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.