Решение треугольника c катетом 7,88 и углом 32 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=4.925
b=7.88
c=9.292
32°
58°
S=19.4
P=22.1
r=1.757
R=4.646
h=4.176
mc=4.646

Гипотенуза:
c =
b
cos(α°)
=
7.88
cos(32°)
=
7.88
0.848
= 9.292

Угол:
β° = 90°-α°
= 90°-32°
= 58°

Высота:
h = b·sin(α°)
= 7.88·sin(32°)
= 7.88·0.5299
= 4.176

Катет:
a = h·
c
b
= 4.176·
9.292
7.88
= 4.924
или:
a =  c2 - b2
=  9.2922 - 7.882
=  86.34 - 62.09
=  24.25
= 4.924
или:
a = c·sin(α°)
= 9.292·sin(32°)
= 9.292·0.5299
= 4.924
или:
a = c·cos(β°)
= 9.292·cos(58°)
= 9.292·0.5299
= 4.924
или:
a =
h
cos(α°)
=
4.176
cos(32°)
=
4.176
0.848
= 4.925
или:
a =
h
sin(β°)
=
4.176
sin(58°)
=
4.176
0.848
= 4.925
или:
a =  
c2 -  c4- 4c2h2
2
=  
9.2922 -  9.2924- 4·9.2922·4.1762
2
=  
86.34 -  7454.6- 4·86.34·17.44
2
=  
86.34 -  1431.5
2
= 4.925

Площадь:
S =
h·c
2
=
4.176·9.292
2
= 19.4

Радиус описанной окружности:
R =
c
2
=
9.292
2
= 4.646

Медиана:
Mc =
c
2
=
9.292
2
= 4.646

Радиус вписанной окружности:
r =
a+b-c
2
=
4.925+7.88-9.292
2
= 1.757

Периметр:
P = a+b+c
= 4.925+7.88+9.292
= 22.1
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.