Решение треугольника c катетом 390 и углом 1 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=6.807
b=390
c=390.08
89°
S=1327.4
P=786.89
r=3.364
R=195.04
h=6.806
mc=195.04

Гипотенуза:
c =
b
cos(α°)
=
390
cos(1°)
=
390
0.9998
= 390.08

Угол:
β° = 90°-α°
= 90°-1°
= 89°

Высота:
h = b·sin(α°)
= 390·sin(1°)
= 390·0.01745
= 6.806

Катет:
a = h·
c
b
= 6.806·
390.08
390
= 6.807
или:
a =  c2 - b2
=  390.082 - 3902
=  152162.4 - 152100
=  62.41
= 7.9
или:
a = c·sin(α°)
= 390.08·sin(1°)
= 390.08·0.01745
= 6.807
или:
a = c·cos(β°)
= 390.08·cos(89°)
= 390.08·0.01745
= 6.807
или:
a =
h
cos(α°)
=
6.806
cos(1°)
=
6.806
0.9998
= 6.807
или:
a =
h
sin(β°)
=
6.806
sin(89°)
=
6.806
0.9998
= 6.807
или:
a =  
c2 -  c4- 4c2h2
2
=  
390.082 -  390.084- 4·390.082·6.8062
2
=  
152162.4 -  23153395974- 4·152162.4·46.32
2
=  
152162.4 -  23125203325
2
= 6.807

Площадь:
S =
h·c
2
=
6.806·390.08
2
= 1327.4

Радиус описанной окружности:
R =
c
2
=
390.08
2
= 195.04

Медиана:
Mc =
c
2
=
390.08
2
= 195.04

Радиус вписанной окружности:
r =
a+b-c
2
=
6.807+390-390.08
2
= 3.364

Периметр:
P = a+b+c
= 6.807+390+390.08
= 786.89
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.