Решение треугольника c катетом 47.5 и углом 33 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=30.85
b=47.5
c=56.64
33°
57°
S=732.64
P=134.99
r=10.86
R=28.32
h=25.87
mc=28.32

Гипотенуза:
c =
b
cos(α°)
=
47.5
cos(33°)
=
47.5
0.8387
= 56.64

Угол:
β° = 90°-α°
= 90°-33°
= 57°

Высота:
h = b·sin(α°)
= 47.5·sin(33°)
= 47.5·0.5446
= 25.87

Катет:
a = h·
c
b
= 25.87·
56.64
47.5
= 30.85
или:
a =  c2 - b2
=  56.642 - 47.52
=  3208.1 - 2256.3
=  951.84
= 30.85
или:
a = c·sin(α°)
= 56.64·sin(33°)
= 56.64·0.5446
= 30.85
или:
a = c·cos(β°)
= 56.64·cos(57°)
= 56.64·0.5446
= 30.85
или:
a =
h
cos(α°)
=
25.87
cos(33°)
=
25.87
0.8387
= 30.85
или:
a =
h
sin(β°)
=
25.87
sin(57°)
=
25.87
0.8387
= 30.85
или:
a =  
c2 -  c4- 4c2h2
2
=  
56.642 -  56.644- 4·56.642·25.872
2
=  
3208.1 -  10291906- 4·3208.1·669.26
2
=  
3208.1 -  1703694
2
= 30.85

Площадь:
S =
h·c
2
=
25.87·56.64
2
= 732.64

Радиус описанной окружности:
R =
c
2
=
56.64
2
= 28.32

Медиана:
Mc =
c
2
=
56.64
2
= 28.32

Радиус вписанной окружности:
r =
a+b-c
2
=
30.85+47.5-56.64
2
= 10.86

Периметр:
P = a+b+c
= 30.85+47.5+56.64
= 134.99
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.