Решение треугольника c катетом 1500 и гипотенузой 3980 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=1500
b=3686.5
c=3980
22.1°
67.9°
S=2764875
P=9166.5
r=603.25
R=1990
h=1389.8
mc=1990

Катет:
b =  c2 - a2
=  39802 - 15002
=  15840400 - 2250000
=  13590400
= 3686.5

Угол:
α° = arcsin
a
c
= arcsin
1500
3980
= 22.1°

Радиус описанной окружности:
R =
c
2
=
3980
2
= 1990

Медиана:
Mc =
c
2
=
3980
2
= 1990

Угол:
β° = arcsin
b
c
= arcsin
3686.5
3980
= 67.9°
или:
β° = 90°-α°
= 90°-22.1°
= 67.9°

Высота:
h =
ab
c
=
1500·3686.5
3980
= 1389.4
или:
h = b·sin(α°)
= 3686.5·sin(22.1°)
= 3686.5·0.3762
= 1386.9
или:
h = a·cos(α°)
= 1500·cos(22.1°)
= 1500·0.9265
= 1389.8

Площадь:
S =
ab
2
=
1500·3686.5
2
= 2764875

Радиус вписанной окружности:
r =
a+b-c
2
=
1500+3686.5-3980
2
= 603.25

Периметр:
P = a+b+c
= 1500+3686.5+3980
= 9166.5
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.