меню

Решение треугольника c катетом 4,2 и углом 1,5 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=0.1099
b=4.2
c=4.201
1.5°
88.5°
S=0.2311
P=8.511
r=0.05445
R=2.101
h=0.11
mc=2.101

Гипотенуза:
c =
b
cos(α°)
=
4.2
cos(1.5°)
=
4.2
0.9997
= 4.201

Угол:
β° = 90°-α°
= 90°-1.5°
= 88.5°

Высота:
h = b·sin(α°)
= 4.2·sin(1.5°)
= 4.2·0.02618
= 0.11

Катет:
a = h·
c
b
= 0.11·
4.201
4.2
= 0.11
или:
a =  c2 - b2
=  4.2012 - 4.22
=  17.65 - 17.64
=  0.008401
= 0.09166
или:
a = c·sin(α°)
= 4.201·sin(1.5°)
= 4.201·0.02618
= 0.11
или:
a = c·cos(β°)
= 4.201·cos(88.5°)
= 4.201·0.02618
= 0.11
или:
a =
h
cos(α°)
=
0.11
cos(1.5°)
=
0.11
0.9997
= 0.11
или:
a =
h
sin(β°)
=
0.11
sin(88.5°)
=
0.11
0.9997
= 0.11
или:
a =  
c2 -  c4- 4c2h2
2
=  
4.2012 -  4.2014- 4·4.2012·0.112
2
=  
17.65 -  311.52- 4·17.65·0.0121
2
=  
17.65 -  310.67
2
= 0.1099

Площадь:
S =
h·c
2
=
0.11·4.201
2
= 0.2311

Радиус описанной окружности:
R =
c
2
=
4.201
2
= 2.101

Медиана:
Mc =
c
2
=
4.201
2
= 2.101

Радиус вписанной окружности:
r =
a+b-c
2
=
0.1099+4.2-4.201
2
= 0.05445

Периметр:
P = a+b+c
= 0.1099+4.2+4.201
= 8.511
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: