Решение треугольника c катетом 95 и углом 30 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=95
b=164.55
c=190
30°
60°
S=7815.7
P=449.55
r=34.78
R=95
h=82.27
mc=95
Гипотенуза:
c =
a
sin(α°)
=
95
sin(30°)
=
95
0.5
= 190
Угол:
β° = 90°-α°
= 90°-30°
= 60°
Высота:
h = a·cos(α°)
= 95·cos(30°)
= 95·0.866
= 82.27
Катет:
b = h·
c
a
= 82.27·
190
95
= 164.54
или:
b = c2 - a2
= 1902 - 952
= 36100 - 9025
= 27075
= 164.54
или:
b = c·sin(β°)
= 190·sin(60°)
= 190·0.866
= 164.54
или:
b = c·cos(α°)
= 190·cos(30°)
= 190·0.866
= 164.54
или:
b =
h
sin(α°)
=
82.27
sin(30°)
=
82.27
0.5
= 164.54
или:
b =
h
cos(β°)
=
82.27
cos(60°)
=
82.27
0.5
= 164.54
или:
b =
c2 + c4- 4c2h2
2
=
1902 + 1904- 4·1902·82.272
2
=
36100 + 1303210000- 4·36100·6768.4
2
=
36100 + 325853040
2
= 164.55
Площадь:
S =
h·c
2
=
82.27·190
2
= 7815.7
Радиус описанной окружности:
R =
c
2
=
190
2
= 95
Медиана:
Mc =
c
2
=
190
2
= 95
Радиус вписанной окружности:
r =
a+b-c
2
=
95+164.55-190
2
= 34.78
Периметр:
P = a+b+c
= 95+164.55+190
= 449.55
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: