Решение треугольника c катетом 185 и гипотенузой 250 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=168.15
b=185
c=250
42.3°
47.7°
S=15553.9
P=603.15
r=51.58
R=125
h=124.36
mc=125

Катет:
a =  c2 - b2
=  2502 - 1852
=  62500 - 34225
=  28275
= 168.15

Угол:
β° = arcsin
b
c
= arcsin
185
250
= 47.7°

Радиус описанной окружности:
R =
c
2
=
250
2
= 125

Медиана:
Mc =
c
2
=
250
2
= 125

Угол:
α° = arcsin
a
c
= arcsin
168.15
250
= 42.3°
или:
α° = 90°-β°
= 90°-47.7°
= 42.3°

Высота:
h =
ab
c
=
168.15·185
250
= 124.43
или:
h = b·cos(β°)
= 185·cos(47.7°)
= 185·0.673
= 124.51
или:
h = a·sin(β°)
= 168.15·sin(47.7°)
= 168.15·0.7396
= 124.36

Площадь:
S =
ab
2
=
168.15·185
2
= 15553.9

Радиус вписанной окружности:
r =
a+b-c
2
=
168.15+185-250
2
= 51.58

Периметр:
P = a+b+c
= 168.15+185+250
= 603.15
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.