Решение треугольника c катетом 2,9 и углом 34 и высотой 1,655 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=1.996
b=2.9
c=3.498
34°
56°
S=2.895
P=8.394
r=0.699
R=1.749
h=1.655
mc=1.749

Катет:
a =
h
cos(α°)
=
1.655
cos(34°)
=
1.655
0.829
= 1.996

Гипотенуза:
c =
b
cos(α°)
=
2.9
cos(34°)
=
2.9
0.829
= 3.498

Угол:
β° = 90°-α°
= 90°-34°
= 56°

Площадь:
S =
ab
2
=
1.996·2.9
2
= 2.894
или:
S =
h·c
2
=
1.655·3.498
2
= 2.895

Радиус вписанной окружности:
r =
a+b-c
2
=
1.996+2.9-3.498
2
= 0.699

Радиус описанной окружности:
R =
c
2
=
3.498
2
= 1.749

Периметр:
P = a+b+c
= 1.996+2.9+3.498
= 8.394

Медиана:
Mc =
c
2
=
3.498
2
= 1.749
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.