Решение треугольника c катетом 2,9 и гипотенузой 3,5 и углом 56 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=1.957
b=2.9
c=3.5
34°
56°
S=2.839
P=8.357
r=0.6785
R=1.75
h=1.622
mc=1.75

Катет:
a =  c2 - b2
=  3.52 - 2.92
=  12.25 - 8.41
=  3.84
= 1.96
или:
a = c·cos(β°)
= 3.5·cos(56°)
= 3.5·0.5592
= 1.957

Угол:
α° = 90°-β°
= 90°-56°
= 34°

Высота:
h = b·cos(β°)
= 2.9·cos(56°)
= 2.9·0.5592
= 1.622

Радиус описанной окружности:
R =
c
2
=
3.5
2
= 1.75

Медиана:
Mc =
c
2
=
3.5
2
= 1.75

Площадь:
S =
ab
2
=
1.957·2.9
2
= 2.838
или:
S =
h·c
2
=
1.622·3.5
2
= 2.839

Радиус вписанной окружности:
r =
a+b-c
2
=
1.957+2.9-3.5
2
= 0.6785

Периметр:
P = a+b+c
= 1.957+2.9+3.5
= 8.357
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.