Решение треугольника c гипотенузой 300 и высотой 60 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=61.29
b=293.67
c=300
11.8°
78.2°
S=9000
P=654.96
r=27.48
R=150
h=60
mc=150

Катет:
a =  
c2 -  c4- 4c2h2
2
=  
3002 -  3004- 4·3002·602
2
=  
90000 -  8100000000- 4·90000·3600
2
=  
90000 -  6804000000
2
= 61.29

Катет:
b =  
c2 +  c4- 4c2h2
2
=  
3002 +  3004- 4·3002·602
2
=  
90000 +  8100000000- 4·90000·3600
2
=  
90000 +  6804000000
2
= 293.67

Площадь:
S =
h·c
2
=
60·300
2
= 9000

Радиус описанной окружности:
R =
c
2
=
300
2
= 150

Медиана:
Mc =
c
2
=
300
2
= 150

Угол:
α° = arcsin
a
c
= arcsin
61.29
300
= 11.8°

Угол:
β° = arcsin
b
c
= arcsin
293.67
300
= 78.2°

Радиус вписанной окружности:
r =
a+b-c
2
=
61.29+293.67-300
2
= 27.48

Периметр:
P = a+b+c
= 61.29+293.67+300
= 654.96
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.